
MAKE THIS! ELECTRONICS PROTOTYPING using ARDUINO

INTRODUCTION

Welcome to the CHI course Make This!
Electronics Prototyping using Arduino.

The course comprises two 80-minute
sessions. In the first session, you’ll learn
about electronics prototyping by
lighting LEDs and controlling them
using a few digital and analog sensors.

In the second, you’ll build a small paper
robot to see how a microcontroller,
software, sensors and actuators work
together on a single project.

We’ll cover Parts I & II of this guide
today. Try Part III if you’re experienced.

 I: Electronics Prototyping

 II: Paper Robot

 III: The Advanced Section

 IV: Make (More Than) This!

David Sirkin1, J.D. Zamfirescu2, Wendy Ju3

1Stanford, 2Berkeley, and 2Cornell Tech

PAPER ROBOT

Here’s the paper robot project that you’ll be building in the second half of the session.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 1 37

mailto:sirkin@stanford.edu?subject=
mailto:zamfi@berkeley.edu
mailto:wendyju@stanford.edu

MAKE THIS! ELECTRONICS PROTOTYPING using ARDUINO

PART I — ELECTRONICS PROTOTYPING

1. Your Kit

2. Arduino

3. Breadboard

4. LEDs

5. Sensors

6. Voltage Dividers

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 2 37

ELECTRONICS PROTOTYPING KIT

To get started, take out the first 4 items listed below: breadboard, Arduino, USB cable and jumper wires.

Breadboard: Wires plug into its sockets.

Jumper Wires: To connect components.

Button: Normally-open momentary type.

Photocell: Changes resistance with light.

USB Cable: A or C type to C connector.

RC Servo: Motor holds at a set position.

FSR: 250-30K Ohm force-sense resistor.

Box: We use it for the body of the robot.

Arduino Metro Mini: Microcontroller.

LED: Single-color Light Emitting Diodes.

Potentiometer: Resistance of 10K Ohm.

Battery & Clip: To power the Arduino.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 3 37

INSTALL THE ARDUINO SOFTWARE

If you haven’t already done so, download the Arduino software now.

Drivers convert data sent over the USB
port to signals the Arduino understands.

Windows: will try to auto-install drivers.
If the Arduino still isn’t recognized, visit
this link to manually install them.

h t t p s : //g i t h u b . c o m /a d a f r u i t /
Adafruit_Windows_Drivers/releases/latest

macOS: requires you to install drivers.
Visit this link, download CP210x VCP
Mac OSX, and install the .dmg file.

https://www.silabs.com/developers/usb-to-
uart-bridge-vcp-drivers?tab=downloads

Launch the Arduino application. It will
open to the template of a new, empty
sketch. Here’s what it looks like.

Visit the Arduino Software page and
download Arduino IDE version 2.3.2 or
1.8.19 (not the Online IDE) for your OS.
2.3.2 is fine, maybe a little less stable.

http://arduino.cc/en/main/software

Unzip the download, making sure to
preserve the structure of any folders.

Copy the application to a location on
your system that you prefer.

Connect the Arduino to your laptop
using the USB cable. The green power
LED on the top of the Arduino should
light up.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 4 37

2 Install the Drivers1 Install Arduino 3 Launch Arduino

http://arduino.cc/en/main/software
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest
https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers?tab=downloads
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest
https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers?tab=downloads
https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers?tab=downloads
http://arduino.cc/en/main/software

SETUP THE ARDUINO SOFTWARE

Now we’ll set up the software to work with the Arduino Metro Mini board.

Next, select a port for the serial device
to communicate through.

Tools > Port

On Windows, the port may auto-select,
so you can't choose it. Otherwise, it will
typically be COM3 or higher.

On macOS, the port to choose will
resemble /dev/cu.usbserial-1440 (or
some other number).

To check that you’ve chosen the right
port, disconnect the Arduino and
reopen the Serial Port menu.

The entry that has disappeared is the
correct port. Reconnect the board and
select that serial port.

Do you see the 3 buttons at the top left
of the interface?

Hover your mouse over each of these
buttons to highlight its function.

Verify (the check) compiles sketches.
Upload (the arrow) both compiles and
then uploads sketches to the Arduino.
You’ll mostly use Upload (the arrow).

The programmer needs to know what
hardware you’re using, so select the
Arduino Uno using the menu bar.

Tools > Board > Arduino AVR Boards >
Arduino Uno

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 5 37

1 Set the Board 2 Set the Port 3 Interface

Comments�and�Notes�Are�in�Callout�Boxes

ARDUINO’S “HELLO WORLD!”

Open, compile, upload, then edit the Blink sketch to start learning how to program Arduino.

Open the Blink sketch example by
navigating through the top menu bar.

File > Examples > 01.Basics > Blink

Compile and upload the sketch, using
the arrow button. After a few seconds,
the yellow RX and TX LEDs on the
Arduino should flash quickly.

If the upload is successful, the
message “Done uploading” will appear
in the status bar at the bottom.

You should see the red LED on the top
of the Arduino repeatedly blink on for 1
second, then blink off for 1 second.

Try to modify the Blink sketch so that
the LED flashes at twice its original
rate.

If you’re not sure how to change the
flashing rate, find the line below, and
edit it so the delay is shorter. Then re-
upload your modified sketch.

delay(1000); // wait for a second

When you can readily change the way
that the LED flashes, you’re ready to
move on with the tutorial.

Keep the Blink sketch open for now.

The brain of the Arduino is its micro-
controller. It has a similar role as the
CPU in your laptop, only it’s designed
to be used with sensors and actuators.
The Metro has a 16 MHz ATmega328,
made by Atmel.

Arduino programs are called sketches.
Sketches are just C++ programs. Every
sketch includes 2 special functions:
setup() and loop().

setup() runs once at the start of the
program, and loop() runs forever after
that.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 6 37

1 Flash “Blink” 2 Update “Blink”

http://www.atmel.com/devices/atmega328.aspx
http://www.atmel.com/devices/atmega328.aspx

BREADBOARD WIRING OVERVIEW

Your breadboard has a few regions: power and ground rails on the sides, and circuit-building areas in the center.

The holes along any column (either red
or blue) are connected to every other
hole in that column (only!).

The rails marked by red stripes are
used for power, and the rails marked
by blue or black are used for ground.

The Arduino receives power from your
laptop through the USB cable. It then
makes that power available to circuits
on your breadboard through its 5V,
3.3V and GND pins.

The holes along any row are connected
to every other hole in that row (only!).

The separation that runs down the
middle of the board isolates the rows
on the left side from those on the right.

When changing any circuit on the
breadboard, it’s a good idea to unplug
the USB cable from the Arduino, so
you don’t power something by mistake,
so unplug it for now.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 7 37

Circuit Building AreaPower & Ground Rails Separator

SETUP THE BREADBOARD

Now we’ll configure the board for convenient access to power and ground through the rails.

A: Using 2 long jumper wires, connect
the power and ground rails across
opposite sides of the board, as shown
on the right side of the image. Red
connects to red, blue to blue.

Note: The wires may be red or some
other color. Pay attention to the rails.

B: Using 2 short jumper wires, connect
the Arduino’s 5V pin to the red power
rail, and either of the Arduino’s 2 GND
pins to the blue ground rail.

Together, these connections create a
convenient power supply along both
rails for your circuits.

Double-check your wiring against the
image on the left to make sure that you
got everything right.

Now plug the USB cable back into the
Arduino. You should see the green
power LED on the Arduino turn on.

If you don’t, you have a short circuit,
and should disconnect the USB cable
and fix the circuit right away!

If everything looks good, you’re up and
running, and ready to light some LEDs.

A short circuit is when the GND and
5V pins of the Arduino connect
together, and it can destroy the
Arduino. :-(

We recommend you unplug the USB
cable every time you change a circuit.

Unplug the USB cable from the Arduino,
then socket it into your board as shown,
with the USB port facing the outside.

Make sure it straddles the separation
that runs down the middle of the board.

If it doesn’t, then the pins on one side
of the Arduino would connect to those
on the other side, mixing their signals.

Some boards have blue lines & others
have black. Both mean ground (GND).
Orient the board’s lines as shown here.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 8 37

2 Wire the Board 3 Power the Board1 Socket the Arduino

Blue
Red

Blue
Red

5V GND

BASIC LED CIRCUITS 1: LED Always On

Let’s build 3 LED circuits: 1) LED always on, 2) LED control by button, and 3) LED control by program.

Now plug the USB cable back into the
Arduino. Your new LED should light up.

Notice that the onboard LED is still
flashing. That’s because the Arduino is
still running the Blink program from
earlier.

It’s important to always place a resistor
in series with any LED, to limit the
current in the LED to a safe value.

We include a circuit diagram alongside
each drawing. Circuit diagrams are
readable and portable, so it’s worth
being (somewhat) familiar with them.

LEDs are diodes, and diodes only work
(as intended) when oriented one way.

Connect the longer lead (the anode)
toward power, and the shorter lead (the
cathode) toward ground. In the diagram
at left, the longer lead has a bent knee.

Note: The long arm reaches for power!

Diffuse Red LED

First, unplug the USB cable from the
Arduino, then build the circuit shown
below. Use a 220 Ohm resistor.

Resistors have 4 color bands to indicate
their resistance. For 220 Ohm resistors,
the bands are: red, red, brown and
(farther away) gold.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 9 37

1 Add a Resistor 3 Power the Arduino2 Add an LED

Blue�Rail

Long�Lead

220�Ohm

LED

5V

BASIC LED CIRCUITS 2: LED Control by Button

Let’s build 3 LED circuits: 1) LED always on, 2) LED control by button, and 3) LED control by program.

If your button doesn’t work, check that
it’s oriented as shown below. You might
need to rotate it by 90 degrees.

A typical pushbutton, when pressed,
connects the 2 pins on one side to the
2 pins on the other side.

Unplug the USB cable from the
Arduino, then insert a pushbutton into
the circuit, as shown below. Press the
button’s leads fully into the board.

Make sure that the button crosses the
center separator, as shown on the right.

Note that you have to move the short
wire that connected the LED to power.

Now plug the USB cable back into the
Arduino, and check that the button
works: the LED should light only when
you press the button.

Congratulations, you’ve made a light
switch.

12mm Pushbutton

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 10 37

2 Power the Arduino1 Add a Button

Switched Connected

Move�Wire�Here

Lead�Inline�with�LED

220�Ohm

LED

5V
Switch

BASIC LED CIRCUITS 3: LED Control by Program

Let’s build 3 LED circuits: 1) LED always on, 2) LED control by button, and 3) LED control by program.

Return to the Blink sketch that’s open
on your laptop. The following line sets
pin 13 to output, or “source,” voltage.

pinMode(13, OUTPUT);

And the following lines tell the Arduino
to send 5V, and later 0V, out that pin.

digitalWrite(13, HIGH);

digitalWrite(13, LOW);

The Metro Mini’s red onboard LED is
internally connected to pin 13. You can
also connect an external LED to the
same pin: they’ll behave the same.

Why is Blink still running? The most
recently loaded sketch is stored in
flash memory, so it’s remembered even
after you power down the Arduino.

Unplug the USB cable from the Arduino,
then rewire the board shown below.

First remove the button and the short
wire that powered the circuit before.
Then connect a long jumper wire to
Arduino pin 13. This pin will now power
the LED.

Reconnect the USB cable. The external
LED should flash with the onboard LED.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 11 37

1 Rewire the Board 2 Revisit “Blink”

220�Ohm

LED

Pin�13Pin�13

Lead�Inline�with�LED

FADING THE LED

The last way to control an LED is to vary its brightness, using pulse width modulation, or PWM.

Update your circuit so the jumper wire
connects to pin 11, as shown on the
left. Then open the Fade sketch.

File > Examples > 01.Basics > Fade 

The first line (after the comment) sets
the variable named led to pin 9.

int led = 9;

But your LED is connected to pin 11.
Edit the line above to set led to pin 11.

Now upload your sketch and check
that the LED fades on and off.

Try changing a few parameter values to
better understand how things work.
Start with the last line, for example.

delay(30);

To control an LED using PWM, you
have to connect it to one of the pins
that supports PWM (not all do!).

On the Metro Mini, these are pins 3, 5,
6, 9, 10 and 11.

You also have to use analogWrite()
(which enables PWM) in your sketch,
rather than digitalWrite().

What about those “breathing” LEDs
during sleep mode on many laptops?

The fading light is done using pulse
width modulation, or PWM. The LED is
toggled on and off very quickly: say,
1,000 times per second. Much faster
than your eye can follow.

The percentage of time that the LED is
on (called the duty cycle) controls its
apparent brightness.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 12 37

2 Rewire the Board1 LED Brightness

Pin�11

3 Flash “Fade”

220�Ohm

LED

Pin�11

SENSING A BUTTON PRESS

The Arduino can detect different voltages, as well as provide them. Here’s how.

Open the Button sketch, look over how
it works for a moment, and then run it.

File > Examples > 02.Digital > Button

Make sure that the Arduino’s onboard
LED lights when you press the button.

It’s okay to connect the jumper wire to
the “opposite” side of the button: recall
that the 2 leads on the same side are
connected to each other.

In the earlier circuit, the LED turned on
because the button directly switched a
supply of 5V to it.

Here, pushing the button sends a 5V
signal to pin 2. The sketch reads this,
and sends 5V to pin 13, which is
attached to the onboard LED.

Any Arduino pin can be made an input
(or an output) by setting its mode in the
setup() function, like the following.

pinMode(buttonPin, INPUT);

The resistor is required for the button
circuit to work. Without it, closing the
switch would create a short circuit (!).

It’s just as easy for your Arduino to
sense input as it is to control output.
Wire your board with the button circuit
shown below.

Check that the wire that connects from
the button to the Arduino is on pin 2.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 13 37

1 Replace the Button 2 Flash “Button”

Lead�Inline�with�Wire

Pin�2

Pin�2

Switch

5V

220�Ohm

Pins as Input or Output

ANALOG SENSORS: Potentiometer

Buttons have only 2 states: open and closed. A potentiometer provides a continuous range of values.

Open the AnalogInput sketch, look
over how it works for a moment, and
then upload it.

File > Examples > 03.Analog > AnalogInput

At first, the onboard LED should flash.
As you rotate the potentiometer’s cap,
the LED should flash at different rates.

For this potentiometer, the resistance
between the 2 outer pins is a constant
10K Ohms.

However, the resistance between either
of the 2 outer pins and the center pin
varies as you turn the cap.

For more about what input the Arduino
can sense (only voltage), and how a
potentiometer (which varies resistance)
works with it, read the page on Voltage
Dividers at the end of Part I.

A potentiometer (or “pot”) is really just
a variable resistor. It includes 3 pins.

Find the potentiometer in your kit and
rewire your board as shown below.

Using a long jumper wire, connect the
potentiometer’s center pin to the
Arduino’s analog input pin labeled A0.
Connect 1 outer pin to the power rail,
and the other to the ground rail.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 14 37

2 Flash “AnalogInput”1 Add a Potentiometer

CenterPin�A0

10k�Pot

5V

Pin�a0

ANALOG SENSORS: Potentiometer & LED

Now that you can read a signal from a potentiometer, lets use it to control an external LED.

Update the AnalogInput sketch to flash
the external LED that you just wired to
pin 11, rather than the onboard LED,
which is connected to pin 13, then
upload the modified sketch.

If you need a hand, here’s the line that
you should edit.

int ledPin = 13; // select the pin

Analog sensors are among the most
useful in electronics. Other common
types include photocells, proximity
sensors, force-sensing resistors (FSRs),
accelerometers, gryoscopes and ultra-
sonic rangefinders.

Without removing the potentiometer
circuit, connect a long jumper wire from
an external LED to Arduino pin 11, as
shown below.

Notice that we're just combining the
circuits from a) Fading the LED and b)
Analog Sensors: Potentiometer.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 15 37

1 Add an LED 2 Update “AnalogInput”

10k�Pot

5V

Pin�a0
220�Ohm

LED

Pin�11Pin�11 Wire�Inline�with�LED

ANALOG SENSORS: FSR & Photocell

Let's explore 2 other analog sensors, both of which are used on real-world robots.

Update the AnalogInput input sketch to
read the value from the FSR, which you
just connected to pin A4.

If you need a hand, here's the line that
you should edit.

int sensorPin = A0; // select the pin

Like a potentiometer, the FSR and
photo cell change resistance, just when
the pressure or ambient light changes.

Now is a good time to try the force-
sensing resistor (FSR). It looks like this.

Leave the potentiometer and LED in
place, and add a 10K Ohm resistor and
jumper wires as below. The 10K Ohm
color bands are: brown, black, orange
and (farther away) gold.

Find the photocell (also called a photo
resistor) in your kit. It looks like this.

Just replace the FSR with the photocell.
You can continue to use the same 10K
Ohm resistor and jumper wires.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 16 37

3 Try a Photocell1 Try an FSR 2 Update “AnalogInput”

5V

Pin�a4

10k�Ohm

FSR

5V

Pin�a4

10k�Ohm

Photocell

Blue�RailBetween�FSR�&�Resistor

Pin�A4

VOLTAGE DIVIDERS

One of the most fundamental and useful circuits in electronics!

The Arduino’s pins can only input or
output voltages.

So how did we use sensors, such as a
potentiometer, FSR and photocell,
which only vary resistance?

Because it’s easy to transform varying
resistance into varying voltage, using a
voltage divider circuit. Here’s how...

A basic voltage divider has 2 resistors,
connected in series, between power
and ground, as shown below.

One of these (which is your sensor) has
varying resistance, while the other has
a fixed resistance.

At the point between the 2 resistors
(Vout on the left), you can measure how
much the voltage dropped as it passed
through the first resistor (R1).

The voltage at Vout changes as the ratio
between the 2 resistances changes (by
the equation shown at left).

You can then connect Vout to one of
your Arduino’s analog input pins. On
the Metro Mini, these are pins A0–A5.

A potentiometer includes both R1 and
R2, so the connection will look like this.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 17 37

Why You Need Them How Do They Work?

Vin

R2

R1
Vout�=����������Vin

R2
R1�+�R2

MAKE THIS! ELECTRONICS PROTOTYPING using ARDUINO

PART II — PAPER ROBOT

1. Servos

2. Robot Face

3. Batteries

4. Arms & Body

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 18 37

SERVOS 1: Making Things Move

When you’re ready to move on from flashing lights to moving things.

Open the library panel on the left side
of the interface (the bookshelf icon),
search for “servo”, and install the Servo
library. Then open the Sweep sketch.

File > Examples > Servo > Sweep

Edit the following line to attach the
servo to pin 5, instead of pin 9.

myservo.attach(9); // attach the servo

When you upload the sketch, your
servo should start sweeping back and
forth, by about 180 degrees.

Change some parameters in the sketch
to make the servo sweep slower, or
over a smaller angle. For example, edit
the following line to lower the sweep
speed.

delay(15); // waits 15ms

A servo is a DC motor, geartrain,
potentiometer and feedback circuit, all
in a single housing.

By sending a PWM signal from your
Arduino to the servo, you’re telling it
what angular position you’d like it go to.

The potentiometer tells the feedback
circuit the servo’s current position, and
the circuit drives the motor to match
the desired position.

A: Connect 3 jumper wires as shown on
the left, with the white wire to pin 5: this
wire carries the signal.

B: Connect the servo to your bread
board, by snapping off a 3-pin segment
from a right-angle breakaway header.

Socket the header as follows. You want
white on the left, black on the right.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 19 37

2 Add a Servo 3 Flash “Sweep”1 What’s a Servo?

BA

Pin�5 Inline�with�White�Wire

SERVOS 2: Controlling Movement

We really want to control servos using sensors. Let’s start with a potentiometer.

Open the Knob sketch.

File > Examples > Servo > Knob

We’ll be changing 2 lines here, because
we used different pins for our circuit.

A. Edit the following line to set the
potPin variable to A0, rather than 0.

int potpin = 0; // analog pin

B. Edit the following line to attach the
servo to pin 5, rather than pin 9.

myservo.attach(9); // attach the servo

Now upload and run the Knob sketch,
then turn your potentiometer’s cap. If
all goes well, the servo should turn in
sync with the potentiometer’s cap.

You can turn the servo the opposite
way by updating the following line.

val = map(val, 0, 1023, 0, 180);

This line maps possible analog input
values (which range from 0–1,023) to
possible servo angles (which range
from 0–180). Try the following instead.

val = map(val, 0, 1023, 179, 0);

Why aren’t we using the default pins in
the example sketches?

Arduino’s current servo library disables
PWM on pins 9 and 10. However, these
are the pins that the examples use.

As a result, we’ve changed our circuit
to use other pins instead.

There are 2 common types of servo:
standard and continuous. A continuous
servo doesn’t go to a desired position.
Instead, the signal tells it what speed
and direction to (continually) turn.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 20 37

1 Update “Knob” 2 Flash “Knob”

THE ROBOT’S FACE 1: Using LEDs as Eyes

We recommend using 2 LEDs for the robot’s eyes, and the potentiometer for its nose.

Since you’ve connected 2 rows across
the separator, the LEDs will receive the
same signal, and both should light up.

With the breadboard set at the bottom
of your box, you should now be able to
position the LEDs to poke out the top
of the box, as the robot's eyes.

LEDs can be connected in series or in
parallel. Wired in series, the supply
voltage gets divided among the LEDs,
so each LED will appear dimmer.

Wired in parallel, each LED draws the
full supply voltage, so they appear the
same brightness (but the power supply
will drain faster as a result).

Let’s add a second LED in parallel with
the first.

First, add 2 short jumper wires to cross
the separator down the center of the
breadboard, as shown below.

Second, orient the second LED’s leads
the exact same way as the first LED’s,
and socket it into the same rows of the
breadboard (just on the other side).

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 21 37

1 Add a 2nd LED LEDs in Series & Parallel

220�Ohm

LEDs

Pin�11
Keep�Leads�Inline

THE ROBOT’S FACE 2: Moving Sensors Off-Board

Sensors are often more useful located away from the main circuit board, such as a robot’s face or arm.

As you build projects with many lights,
sensors and actuators, planning the
layout of your breadboard beforehand
can be a great help.

But you may eventually need to move
LEDs, potentiometers, FSRs and
photocells off the breadboard, so you
can attach them to your project
wherever they’re needed.

The shorter, right-angle jumper wires
have a core of solid wire. They hold
their set shape well, but aren’t flexible.

The longer jumper wires have a core of
flexible, stranded wire, making them
great for connecting to components off
the breadboard.

Find the male-female jumper wires in
your kit. They look like this.

Split off a 2-wire pair and a 3-wire triple.
Try to keep each of them joined over its
length, to keep things tidy.

Remove the FSR from your bread
board. Attach one end to the 2-wire
pair, and socket the other end back into
the breadboard (in the same place as
b efo re) . Do t h e s a m e fo r t h e
potentiometer and the 3 wires.

You may want to use some Blu-Tack
adhesive, or electrical tape, to hold the
sensors in place against the wires.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 22 37

3 Move the Sensors2 Long Jumper Wires1 Breadboard Layout

POWER: USB & Batteries

The electronics are almost done. Let's untether the electronics from your laptop.

Up to this point, your Arduino has been
connected to your laptop through a
USB cable.

The cable does 2 things: 1) it allows the
laptop and Arduino to communicate,
and 2) it powers the Arduino.

Many do-it-yourself (DIY) projects are
meant to run standalone, without being
connected to a laptop. For that, we use
batteries.

Arduino sketches reside in flash
memory, so once a sketch is uploaded,
it can run without communicating with
your laptop..

We’ve had many students injure their
Arduino when connecting a battery (!).
Please follow these 3 steps carefully.

A: Find the 9V battery in your kit and
snap on the cap with red & black leads.

B: Connect the black (ground) lead to
either the ground rail or one of the 2
GND pins on the Arduino.

C: Connect the red (power) lead to the
Vin (voltage in) pin. Only this pin has a
regulator, which safely translates 9V
down to 5V.

Your project should start running
again, with no tether to the laptop.

Here’s the final layout of your robot's
electronics.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 23 37

1 Add a BatteryAbout the USB Cable

Vin

GND

Final Breadboard Layout

THE ROBOT’S BODY

It will house the breadboard circuit, off-board components and battery.

Trace out the shape of the 2 LEDs,
potentiometer and servo on the box’s
top and side, and cut them out with a
utility knife.

Cut the servo into the hinge side of the
box! Otherwise you have to cut through
2 layers of cardboard (including the
flap) instead of 1.

Position and tape or glue components
in place. Attach them from inside of the
box to keep the outside clean.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 24 37

1 Place Openings 3 Attach Parts2 Cut Openings

Cut�Into�the�Hinge�Side Insert�Parts�into�PlaceTrace�Out�Shapes�First

THE ROBOT’S ARMS

Both arms work together: one supports the FSR, the other attaches to the servo.

There are 2 approaches to making an
arm move. The quickest approach is to
reuse the Sweep or Knob sketches
from the start of this section.

Keep in mind that Sweep constantly
moves the arm (unless you edit it), and
Knob requires the potentiometer.

The fancier approach is to interactively
shake hands, described next...

If you want the robot to shake hands,
follow these 3 easy steps.

A: Bring the FSR to the outside of the
box, either through the top of the lid,
or an opening you cut along one side.

B: Affix (tape or glue) the FSR to the
arm that is not attached to the servo,
positioning the round pad at the hand.

You can affix the FSR to the arm that is
attached to the servo, but wiring can
be a challenge, since the arm moves.

C: Upload the robot control sketch
that we’ve provided, to read the FSR
value and move the servo. Voilà.

The robot’s arms can be cut from
construction paper, cardboard or foam
sheets. Here’s a sample pattern you
might follow.

To attach the cutout arm to the servo,
snap a white plastic arm (from the clear
plastic bag) onto the servo’s hub, then
tape or glue the cutout arm to that.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 25 37

1 Cut Out 2 Arms 2a Make an Arm Move 2b Shake Hands

Servo

FSR

MAKE THIS! ELECTRONICS PROTOTYPING using ARDUINO

PART III — THE ADVANCED SECTION

1. Fading LEDs

2. Control Sketch

3. RGB LEDs

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 26 37

ANALOG SENSORS: Potentiometer, LED & Fading

We can use the potentiometer to fade an LED’s brightness, rather than to change its flash rate.

In the AnalogInput sketch, turning
the potentiometer changes the flash
rate. What if we want to change the
LED’s brightness instead?

We need to edit the sketch so that
the value read from the sensorPin is
used to PWM the ledPin.

Try to figure this out on your own,
referring back to the Fade sketch.

Or, it’ll be quicker to look over how
the code here works, then paste it
instead of the original loop()
function.

void loop() {

 // read the analog value from the sensor

 sensorValue = analogRead(sensorPin) / 4;

 // write the value out to the led

 analogWrite(ledPin, sensorValue);

}

We divide sensorValue by 4 because
the Arduino’s analog input has 4
times the resolution of its PWM
output.

Without dividing, we’d only use 1/4
of potentiometer’s rotation range to
fully light the LED.

Remove the division and try it!

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 27 37

1 Edit “loop()” 2 Divide by 4

SAMPLE CONTROL SKETCH

This program: 1) fades LED brightness using the potentiometer, and 2) moves the servo using the FSR value.

The sketch has 2 analog input pins: A0
for the potentiometer and A5 for the
FSR, and 2 output pins: 9 for the LED
and 5 for the servo.

// a sample paper robot control program

// the pot changes the led’s brightness

// a servo shakes the robot's arm after

// an fsr is pressed and fully released

#include <Servo.h>

int potPin = A0;

int potValue = 0;

int ledPin = 11;

int fsrPin = A4;

int fsrValue = 0;

int pressValue = 32;

int releaseValue = 16;

boolean pressed;

Servo myservo;

int servoPin = 5;

The setup function initializes the LED
and servo pins as outputs (all Arduino
pins default to input), and attaches the
servo to PWM pin 5.

// Arduino pins default to INPUT mode

void setup() {

 pinMode(ledPin, OUTPUT);

 pinMode(servoPin, OUTPUT);

 myservo.attach(servoPin);

 // move the servo to its 0 position

 myservo.write(0);

 delay(5);

}

We’ve provided this sketch for you, in
the RobotControl folder, so you don’t
have to copy-paste it from here.

The loop function detects an FSR
“press” then checks for a corresponding
“release.” When that arrives, it moves
the arm forward and back.

void loop() {

 potValue = analogRead(potPin) / 4;

 analogWrite(ledPin, potValue);

 fsrValue = analogRead(fsrPin) / 4;

 if (fsrValue > pressValue) {

 pressed = true;

 }

 if (pressed) {

 if (fsrValue < releaseValue) {

 for (int pos = 0; pos <= 90; pos++) {

 myservo.write(pos);

 delay(5);

 }

 for (int pos = 90; pos >= 0; pos--) {

 myservo.write(pos);

 delay(5);

 }

 pressed = false;

 }

 }

}

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 28 37

1 Initialize Variables 2 Setup Pins & Servo 3 Control LED & Servo

THE ROBOT’S FACE 1: About RGB LEDs

To use RGB LEDs for the robot’s eyes, you need to add 2 more wires and update the sketch. You can do this exercise later.

The LEDs that you use can be uni-color
(easier) or RGB (fancier). You already
know how to connect a uni-color LED.

RGB LEDs have 4 (!) leads instead of 2.
That’s because the dome housing
contains 3 lights (red, green and blue).

The long lead is a (common) cathode.
Each of the others is the anode for one
of the 3 colors.

You can create almost any color by
sending a different PWM signal to
each light, and changing its brightness
relative to the others.

Below is a typical way to connect an
RGB LED, using a 220 Ohm resistor on
each anode.

Connect wires from the 3 anodes to
pins 3, 6 and 11, as shown. We chose
these pins to fit with the other parts of
the robot circuit, but any of the PWM
pins will work: 3, 5, 6, 9, 10, or 11.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 29 37

3

R G B

6 11

220�Ohm

Red
GND
Green
Blue

Blue�Rail

Long�Lead

2 Add an RGB LED1 About RGB LEDs

THE ROBOT’S FACE 2: Controlling RGB LEDs

Connect the potentiometer just as you did earlier, and update your sketch to now control 3 output pins per LED.

To fade an RGB (rather than uni-color)
LED, you need to add 2 more output
pins to your sketch, since there are
now 3 colors.

Create a new sketch in the Arduino
IDE, and paste in this sample code.

The idea is to vary the relationship
between 3 parameters (red, green and
blue) using only 1 degree of freedom
(the sensorValue variable).

If we change all 3 pins the same way,
the LED will only change brightness.
By changing 1 pin relative to the other
2, the LED will change color.

int potPin = A0;

int potValue = 0;

int redPin = 3;

int greenPin = 6;

int bluePin = 11;

void setup() {

 pinMode(redPin, OUTPUT);

 pinMode(greenPin, OUTPUT);

 pinMode(bluePin, OUTPUT);

}

void loop() {

 // read analog value from the sensor

 potValue = analogRead(potPin) / 4;

 // write analog value to the 3 LEDs

 analogWrite(redPin, 255 - potValue);

 analogWrite(greenPin, potValue);

 analogWrite(bluePin, potValue);

}

To control the RGB LED, connect the
center pin of a potentiometer to Arduino
analog pin A0, just as we did earlier.

Remember to connect its 2 outer leads
to the power and ground rails.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 30 37

1 Add a Pot 2 How to Fade Color 3 Flash this Sketch

3

R G B

6 11

220�Ohm

10k�Pot

5V

Pin�a0

MAKE THIS! ELECTRONICS PROTOTYPING using ARDUINO

PART IV — MAKE (MORE THAN) THIS!

1. Your Own Lab

2. Resources

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 31 37

SETUP A MAKE THIS! LAB

How you can continue electronics prototyping after this course.

To start your own Make This! lab, you
o n l y n e e d a c o m p u t e r a n d a
prototyping board, like Arduino.

At some time soon, you’ll probably also
want a diagnostic instrument, external
power supply and a few hand tools.

Better quality DMMs are $25–$50, and
provide more precision, functionality,
robust internal circuits and external
housing and probes.

Professional quality DMMs are $100
and up, and usually sense capacitance,
frequency and temperature.

Regarding the diagnostic instrument, a
digital multimeter (DMM) should
probably be your first (and maybe only)
purchase. It’s a great tool to diagnose
circuits, confirm resistor values, check a
battery’s power level, and more.

DMMs like those available during the
course are inexpensive, starting at $10.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 32 37

Getting Started Multimeters (DMMs)

OSCILLOSCOPES

Useful when you’re working with analog signals, and a DMM becomes difficult to use.

A DMM is all you’ll need for a while.
When will you need something else?

DMMs sense voltage, but not very well
if that voltage varies over time: it’s just
a fluctuating number. To identify
frequencies or waveforms (like PWM),
you need an oscilloscope!

An oscilloscope’s strength is in sensing
periodic (sine or square) signals,
making it well suited to analog input.

A hand-held scope, such as the Nano
from DSO, is an inexpensive place to
start, for about $90. A limited feature
set trades off low price and small size.

Also consider a PC-based scope. This
includes a USB probe and software that
runs on your computer, starting at $200.

Desktop scopes are useful when you
work with analog signals a lot. Look for
20+ MHz bandwidth. Prices start at
$400 and go up (way up!) from there.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 33 37

Inexpensive ScopesVoltage Over Time

POWER SUPPLIES

The 3 most useful types include batteries, AC wall adapters and tabletop supplies.

Batteries let you run things on their
own, without being tethered through a
USB cable to your computer.

The Arduino Micro can run safely when
powered from 5V–20V. That’s a single
9V battery, a clip of 3–4 AA or AAA
batteries, or even 2 camera or lithium
ion batteries (connected in series).

Coin cell batteries are designed to
source current slowly, at low levels.
They’ll work for several LEDs, but
greater power demands will exhaust
them quickly.

AC wall adapters are common in the
5V–12V range, which cost $5–10. They
allow you run your project without a
computer, and without batteries that
run down.

The tradeoff is that your project is now
tethered to a power socket, which may
be okay if it won’t be moved frequently.

Tabletop supplies have 2-3 separate
voltage outputs, and let you vary the
amount of voltage sourced by each.

This can be useful when you’re testing
several circuits, especially those using
high-power LEDs or DC motors.

A basic 3-output variable supply, like
the Elenco XP-720, costs $65.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 34 37

Tabletop SuppliesBatteries AC Wall Adapters

PROTOTYPING PLATFORMS

Arduino isn’t the only microcontroller-based prototyping platform. Here are a few others.

Some prototyping boards use the
Arduino’s AVR microcontroller, but
without the Arduino hardware or
software. AVR Freaks has examples.

Another choice is the Microchip PIC.
Microchip provides free (!) samples at
your request, has starter kits with 8-32
bit architectures, and their own free
programming environment, MPLab.
The Microstick prototyping board
starts at $25 and should look pretty
familiar to you.

Arduino hardware and software are
open-source, leading to a variety of
available compatible boards.

There are too many to list here, but 2 of
our favorites are the Teensy and Trinket
MO, which runs CircuitPython. Teensy
even makes boards with 32 bit 600
MHz ARM microcontrollers.

New boards are being developed all the
time, so explore the alternatives. Start
with Arduino’s online store.

For more complex projects, we’ve been
using ESP32-CAM by Espressif, which
you can program in the Arduino IDE. It
has a 32 bit processor, WiFI, Bluetooth,
and costs about $10. Look for a version
with a USB programmer adapter.

If you become limited by the Arduino
software, you can compile sketches
using avr-gcc without the IDE, or use an
Arduino plugin for Eclipse.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 35 37

Other PlatformsArduino Compatible

http://en.wikipedia.org/wiki/List_of_Arduino_boards_and_compatible_systems
https://www.pjrc.com/teensy
https://www.adafruit.com/product/3500
http://store.arduino.cc
http://www.avrfreaks.net
https://www.microchip.com/pagehandler/en-us/products/picmicrocontrollers
http://www.microchip.com/mplabx
http://www.microchip.com/microstick
https://www.espressif.com/en/products/socs/esp32
https://www.espressif.com/en/products/socs/esp32
http://en.wikipedia.org/wiki/List_of_Arduino_boards_and_compatible_systems
https://www.pjrc.com/teensy
https://www.adafruit.com/product/3500
https://www.adafruit.com/product/3500
http://store.arduino.cc

COMPONENTS, SENSORS & TOOLS

Useful things to keep on-hand for when they’re needed.

A few hand tools are also worthwhile.
Some, such as a utility knife, are quite
common. Consider these too.

 
Hot glue gun: Connect parts, fill gaps,
and sets in seconds. Can be removed.

Wire clippers and strippers: To trim
jumper wires and remove the sheathing.

Soldering iron: For stronger mechanical
and electrical connections than crimps.

Perfboard: A base for soldering circuits
together. Similar in use to a breadboard.

To make your lab more useful, keep a
stock of components on hand.

The basics include resistors, capacitors,
jumper wires and alligator clips. Look
for the larger assortment packs.

Other frequently-used components are
transistors (to switch large currents),
voltage regulators (to connect to
different power supplies), op-amps, 555
timer chips, and so many more.

You’ve only used a small sample of
sensors. Others that are common for
prototyping include flex sensors,
encoders (similar to a potentiometer),
RFID sensors, accelerometers and
gyroscopes, infrared or ultrasonic
rangefinders, and even small cameras.

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 36 37

Accelerometer

Flex�Sensor
Alligator�Clips

Basic Components Other Sensors Wiring & Connecting

SOURCES OF COMPONENTS & IDEAS

Where to purchase components, sensors and hand tools. Where to find ideas about what to make.

The websites of hobbyist vendors such
as Sparkfun and Adafruit provide a
sense of the components and custom
breakout boards available for your
projects, including product selection
guides, discussion threads and video
tutorials.

There are many other online vendors in
countries around the world. Just start
searching.

A breakout board is a custom-designed
board that provides easy (breadboard)
access to a small, special-function chip.

Examples include bluetooth, wifi,
sensors, LCDs, even MP3 decoders.

To meet up with fellow makers in
person, you can visit the Maker Faire,
which hosts events around the world.

You can upload your projects and ideas
for other people to browse, improve
upon or purchase (!) at sites such as
Ponoko and Shapeways. You can even
have your own designs laser cut or 3D
printed, then mailed back to you.

Several online resources, including
Instructables, Make and LifeHacker,
feature tutorials about do-it-yourself
projects that use the tools and
materials covered in this course.

To leverage the graphics capability of
your PC, and create interfaces to your
electronics, download Processing and
its Arduino library, and try a few sample
programs. Highly recommended!

Make This! Electronics Prototyping Using Arduino·Sirkin, Zamfirescu, Ju·CHI 2024	 Page of 37 37

Component Vendors Ongoing Education Maker Resources

http://instructables.com
http://makezine.com
http://lifehacker.com
http://processing.org
http://playground.arduino.cc/Interfacing/Processing
http://sparkfun.com
http://adafruit.com
http://learn.adafruit.com
https://learn.sparkfun.com/tutorials
http://instructables.com
http://makezine.com
http://lifehacker.com
http://processing.org
http://playground.arduino.cc/Interfacing/Processing
http://makerfaire.com
http://ponoko.com
http://shapeways.com

